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ABSTRACT 

After discussion of other models for representing heat capacities, the volumetric model 
used in resolution of lanthanide Schottky contributions over the cryogenic range and a more 
recent single-parameter formula to represent the lattice heat capacity, to resolve excess heat 
capacity contributions, to extrapolate lattice heat capacity beyond the measured temperature 
regions, and to predict thermodynamic properties of a compound in a series of known 
isostructural compounds is described. It is based on a new phonon distribution function 
improved over the Debye model by distinguishing between transverse and longitudinal 
modes, differences in the masses of the constituent atoms, the actual shape of the first 
Brillouin zone, the discreteness of the crystal structure, etc. Several other parameters included 
in the formula are uniquely determined from chemical, crystallographic, and elastic data. The 
single characteristic temperature (0), is retained in the formula as a parameter to be 
determined by fitting the calorimetric data. The success of the model was checked by plotting 
the apparent characteristic temperature against temperature for experimental heat-capacity 
data of compounds with purely lattice heat capacities. 

INTRODUCTION 

Modeling the heat capacity morphology is a matter of relating the 
thermophysical properties of condensed phases to atomic structures and 
vibrations. It is a task which even the experimentalist cannot avoid since the 
excess heat capacity related to a transition or to a Schottky function needs 
to be resolved from-except at very low temperatures-the typically greater 
lattice contribution. 
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The rather formidable problem of enumerating and quantifying the 
crystalline vibrational modes must be approached in order to account for the 
absolute values of the heat capacity and their derived thermophysical 
properties, especially the entropy. Having achieved this goal for certain 
substances greatly facilitates not only the interpolation of the lattice heat 
capacities across broad regions where the total measured heat capacity is 
somewhat greater, but encourages the prospect of estimating, or predicting, 
the heat capacities of related substances. Whether that relationship needs to 
involve isostructural crystals, crystals of the same coordination numbers, or 
even looser similarly may depend on the quality of the resolution achieved in 
the model. The problem is nearly a century old but there is still both need 
and hope for an enhancement of the results. 

A dramatic step was induced in 1907 by Einstein’s quantization of 
particle energy as a harmonic oscillator with three degrees of freedom and a 
unique vibration frequency corresponding to a characteristic temperature, 8, 
[l]. Substantial differences between measured heat capacities and those 
predicted by the Einstein model led Nernst and Lindemann [2] to combine 
several (different) Einstein 8, values in 1911 to achieve a better fit. (Much 
later (1955) Blackman [3] provided a basis for this approach.) However, the 
failings of the Einstein model triggered important development by Debye [4] 
in 1912 on a continuum model and, even more exciting, the independent 
analysis of Born and Von Karmin [5,6] on the lattice vibrational spectrum. 
Many others contributed to the solid-state vibrational theory, but inasmuch 
as we recognize a limited goal the full details of lattice dynamics are rather 
more than we can afford to cope with, particularly in the characteristic 
absence of thermal expansion values on crystals of interest. 

OTHER MODELS 

The gap between the simple Einstein [l] or Debye [4] models and the 
more rigorous Born-Von Karman [5,6] treatment for the estimation of 
lattice heat capacity is large. Yet the estimation of lattice heat capacity is 
important in resolving excess heat capacities, in extrapolating heat-capacity 
curves beyond the temperature region measured, and in predicting the heat 
capacity of related compounds. The Debye model is still often used for these 
purposes because lattice heat capacity is fully described by essentially a 
single variable, the Debye characteristic temperature, which can be treated 
as a parameter to be determined by fitting the model to the heat-capacity 
curve or by invoking simple relationships with elastic constants, com- 
pressibility, or melting temperature. But the model generally provides an 
accurate estimate only for the extremely low-temperature region (typically 
below l/50 of the Debye characteristic temperature) or for isotropic mona- 
tomic crystalline compounds. 
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On the other hand, the Born-Von Karman formalism facilitates evalua- 
tion of an accurate density of vibrational modes as a function of frequency 
and the estimation of a more accurate lattice heat capacity. For the simplest 
case, the set of interatomic force constants required is obtained from 
inelastic neutron diffraction data, infrared spectra, Raman spectra, Brillouin 
and X-ray scattering data, and/or elastic and dielectric constants by the 
least-squares method, etc. The number of force constants in such procedures 
is, however, so large that many phonon models (e.g., ion shell, extended 
shell, overlap shell, deformation dipole, deformable shell, breathing shell, 
double shell, quadrupole shell, bond charge, valence force field, valence 
overlap shell model, three-body force shell model, etc.) have been used to 
reduce the number of parameters as well as to interpret phonon spectra. 
Since even these phonon models requires roughly ten parameters to repre- 
sent the phonon distribution function for a simple compound and require 
additional data from sophisticated, slow neutron scattering experiments, 
etc., they are quite impractical for the routine analyses of heat-capacity data. 

Many attempts already have been made to attain a reasonably simple and 
accurate model of phonon distribution for practical use. One of the most 
popular and convenient methods is to express lattice heat capacity as a 
combination of the Debye and Einstein functions. That is, two transverse 
acoustical modes (sometimes degenerate) and one longitudinal acoustical 
mode are approximated by a parabolic distribution which leads to a Debye 
function. Peaks in the distribution function for optical modes, most of which 
are also observed as peaks in infrared or Raman spectra, are represented by 
the Dirac S-function which leads to an Einstein function. 

The much more recent Kieffer model [7,8] has been particularly useful in 
mineralogy. Kieffer’s theoretical and experimental correlation of the lattice 
vibrations of minerals takes into account the many factors involved and 
discusses particularly the analysis of the vibrational contribution. Kieffer 
divided the distribution function into three frequency groups. One comprises 
the acoustical modes. Their phonon distribution is derived from the appli- 
cation of the sinusoidal dispersion relation for a one-dimensional lattice to 
the three-dimensional vibrations. Three cut-off frequencies are obtained 
from the acoustical data. (Such a distribution was derived first by Barber 
and Martin [9].) The second group is the densely packed optical modes 
which are intuitively approximated by a constant phonon density. The 
low-end and high-end frequencies for this portion are obtained from in- 
frared or Raman spectra. The optical modes of the frequencies which are 
outside of the second group form the third group. These modes, which 
usually belong to internal branches, are approximated by the Dirac &func- 
tion. Though these semi-empirical approaches are very useful, especially for 
prediction of the lattice heat capacity from elastic and spectroscopic data, it 
is very difficult to derive a representative characteristic temperature and, 
therefore, useful relationships like the Lindemann equation or the Griineisen 
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relation are not applicable unless each vibrational mode is considered 
independently [7]. Another problem with such methods is the impracticality 
of fitting them to the experimental heat-capacity curve because of the many 
parameters involved. Therefore, the application of these methods to the 
analysis of calorimetric data is confined to the comparison between predic- 
ted and experimental heat capacities when elastic and spectroscopic data are 
available. 

Attempts to get an experimental estimate of Clatt in compound X by 
measuring the heat capacity of an isostructural diamagnetic compound ID 
are frequent. Here, the corresponding states assumption: 

CM(X) T = CM (ID)/KT 

in which K is experimentally deduced, is often employed. 
Alternatively, the Debye 8, approximation may be expressed in terms of 

the mass p of the molecules: 

@%(X)/MID) = MIDM4X)Y’ 

The more refined Lindemann relation using melting temperatures, T,, and 
molar volumes V,, is also used: 

6; = K’T~/$(~‘~ 

Corresponding-states approaches are often used; but for more than half a 
century the Latimer scheme [lO,ll] has been a favorite way of taking into 
account the differences between compounds in iso-anionic series. This 
time-honored scheme, devised primarily for entropy estimates, is not without 
its flaws, despite the several times it was adjusted by Latimer himself. 

THE VOLUMETRIC SCHEME FOR HEAT CAPACITIES 

This scheme was developed at Ann Arbor by Westrum and others during 
extensive investigations of the Schottky contribution [5]. It involves linear 
interpolation on the basis of the molar volumes of the compounds in 
question. In particular, the formula by which the lattice heat capacity of 
praseodymium trihydroxide, for example, may be calculated as: 

C,{Pr(OH),, lattice} = xC,{La(OH),} + (1 - x)C,{Gd(OH),} 

and in which x is the fractional molar volume increment, i.e. 

x = [K,{Pr(OH),) - V,{La(OH)3)1/[K,{La(OH)3)1 

Here the lanthanum and the gadolinium compounds represent diamagnetic 
compounds isostructural with the praseodymium compound with ?S, ground 
states, and hence no Schottky contributions. It should be noted that utili- 
zation of other than linear interpolations would have involved differences in 
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Fig. 1. Comparison of Grernvold and Westrum’s scheme [15] against the background of the 

Latimer scheme (0 . . . . . . 0). The Latimer-scheme contributions; (a), experimental values 

for the lanthanide cations [lO,ll]; ( -) experimental values for the transition-elemental 

cations. 

only second-order effects. The importance of volume was appreciated [13,14] 
on recognition of the fact that for the lanthanide chalcogenides the lattice 
contribution decreased with increasing atomic number and was, therefore, 
diametrically opposed to the trend in the Latimer scheme based on mass. 
The Gronvold/Westrum scheme [15] plus recognition of the lanthanide 
contraction provided the clue (Fig. 1). Other authors [16,17] have been 
engaged in a polemic as to the relevance of volume against mass in 
providing interpolation schemes for lattice contributions (cf. ref. 18). 

An excellent test for the validity of a lattice-contribution scheme is in the 
calculation of the calorimetric Schottky contribution and the comparison of 
this excess heat capacity with that calculated from spectroscopic quantities 
on the samples themselves. This comparison can be made only when one 
utilizes the Stark levels of the concentrated compounds. Measurements made 
on doped lanthanide halides, for example, need to be extrapolated by some 
technique (discussed elsewhere [12]) or by calculations based on crystal-field 
parameters. 

Several tests of the scheme on lanthanide trihydroxides and trichlorides 

Since resolution of Schottky contributions from the generally much larger 
vibrational (lattice) heat capacities of lanthanide compounds has been 
limited by the uncertainty in the magnitude of the lattice contribution, such 
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subtle effects as dependence of the Stark levels on temperature and host 
lattice have been heretofore undetected calorimetrically. 

Since the lanthanide trihydroxides are an iso-anionic series having rela- 
tively small lattice contributions and their lower-lying Stark levels have been 
spectroscopically deduced for many of the concentrated compounds, this 
series is the most nearly ideal system we have yet studied in an attempt to 
resolve Schottky contributions in the 5-350 K range. Three examples 
illustrate the success of the scheme described on Ln(OH), systems. 
Eu(OH),. The Schottky contribution to the heat capacity of the Eu(II1) 
analog [19] is unique in that it arises entirely from thermal populations of 
excited [SL] J-manifolds. This invariably results in the lowest-excited Stark 
levels being much higher in energy for the Eu(II1) analog than for any other 
series member. The calculated Schottky heat capacity is consequently rela- 
tively insensitive to small shifts in the Stark energies and, therefore, is 
expected to be the most accurate approximation to the true Schottky heat 
capacity within any lanthanide series. 

The energy levels of concentrated Eu(OH), were determined by Cone and 
Faulhaber [20] from absorption and fluorescence spectra at 4.2 and 7.7 K. 
Stark levels arising from the ‘Fa, ‘Fl, ‘F2, and ‘F3 manifolds all contribute to 
the Schottky heat capacity below 350 K. The derived calorimetric Schottky 
contribution shown in Fig. 2 is seen to be in excellent accord with that 
calculated from the spectroscopic quantities [21]. 
Pr(OH),. The crystal-field splitting of the 3H4 manifold of Pr(OH), has 
been determined from the absorption spectra of mulls at 95 K [22]. The 
observed spectra were not as highly resolved as those one might obtain from 
measurements on single crystals. This lack of resolution is reflected in a + 3 
cm-’ uncertainty in the Stark wavenumbers. As seen in Fig. 2 the calorimet- 
ric and spectroscopic Schottky curves are in very good agreement between 
15 and 230 K. Below 25 K a cooperative magnetic contribution of unknown 
magnitude plus the uncertainty in the energy of the lowest-excited Stark 
level preclude any attempt to determine the Schottky contribution accu- 
rately in this temperature region. 
Tb(OH),. The energy levels of the lowest four manifolds of concentrated 
Tb(OH), and Tb3+-doped Y(OH), were determined by Scott et al. [23]. The 
observed Schottky anomaly below 350 K is due almost entirely to popula- 
tion of the ‘F6 manifold. The availability of spectroscopically determined 
energy levels for both the Tb(OH), and Y(OH), host lattices provides an 
opportunity to observe directly the sensitivity of the new lattice-contribution 
approximation technique in differentiating between such systems. Hereto- 
fore the general assumption has been that any calorimetrically derived 
Schottky contribution is too crude to detect the effect of any differences in 
the Stark level energies of such systems. 

As seen in Fig. 2 the calorimetric and calculated Tb(OH), Schottky 
curves are in excellent agreement below 160 K, while at higher temperatures 
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Fig. 2. Schottky heat-capacities for several lanthanide trihydroxides. (- ) Spectroscopic 

Schottky contributions; (0) calorimetric Schottky contributions resolved by the volumetric 
method. 

the calorimetric curve trends below that deduced from the spectral quanti- 
ties [24]. 
Iso-anionic lanthanide series and general isostructural series. Thus the trend in 
lattice heat capacities of iso-anionic series of lanthanide compounds may be 
rationalized in terms of two contributing factors: molar mass and molar 
volume. At low temperatures, the lattice contribution is due primarily to 
thermal activation of acoustic lattice modes and molar mass is the dominant 
factor. At higher temperatures increasing thermal activation of optical lattice 
modes, which are strongly affected by the lanthanide contraction, results in 
lattice heat capacities which are related predominantly to the trend in molar 
volume. For the light lanthanide trihydroxides the molar-mass variation is 
dominated by the molar-volume effect at least above 50 K. Only for much 
lighter Y(OH), is the mass effect clearly visible and then only below 100 K. 

Hence, in emphasizing the importance of volume, we do not mean to 
slight mass; especially not at lower temperatures. Results for U(OH),, which 
is isostructural with the Ln(OH),‘s should help to clarify and to test the role 
of mass. Although we have demonstrated the great utility of the volumetric 
scheme as an interpolation device for C,(T) or S’(298 K) for a system of 
isostructural compounds, what about the broader implications? How gener- 
ally does it supplant the Latimer rule even when “augmented” to provide 
magnetic contributions, etc.? 
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Fig. 3. Correlation of entropies and molar volumes. The values in parentheses are molar 
masses of the cations. 

We have examined isostructural series on which sufficient results exist to 
make a judgment. Many interesting trends are observed. For example, as 
seen in Fig. 3, extrapolation by the Latimer scheme from the entropies (298 
IS) of MoS,, WS,, PtS, to that of TiS, would lead to a Latimer-scheme value 
of So/R = 7; on the other hand the volumetric approach would lead to 
So/R = 9.5. Experiment (So/R = 9.4) confirms the latter. In other instances 
the general trend of cation mass with molar volume in iso-anionic series 
often tends to make choice between the two systems difficult inasmuch as 
molar mass and molar volume usually go hand-in-hand. Identification of 
key compounds on which to test the scheme and to develop more reliable 
correlations is underway. The broadening of these schemes has gone more 
slowly than anticipated since the non-conformity often seems to signal an 
interesting excess contribution. 

In total the lanthanide sesquioxides [25-271 have been studied at Ann 
Arbor, the lanth~ide trichlo~des (28,297, the lanth~ide t~hydro~des 
[24,30-323, the lanthanide hexaborides 1331, and work on the lanthanide 
sesquisulfides is also nearly complete [34]. 

In the above discussion, frequent reference is made to Schottky contribu- 
tions [35], interesting in their own right, but used here initially and primarily 
as a means of testing the success of the evaluation of the lattice cont~bution. 

THE SINGLE PARAMETER PHONON DISTRIBUTION MODEL 

We developed a new model for the phonon distribution 1361 characterized 
by a single characteristic temperature as a fitting-parameter for the analysis 
and/or prediition of the thermodynamic properties. Although the equation 
derived from the model to calculate the lattice heat capacity at constant 
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volume is somewhat lengthy, it is simple enough to manage even on a 
microcomputer. Three computer programs written in FORTRAN IV were 
prepared to evaluate apparent characteristic temperatures from given heat- 
capacity data, to predict lattice heat capacities from the given characteristic 
temperatures, and to compare the predicted and given (possible experimen- 
tal) heat capacities. These programs ensure the convenient analysis of 
heat-capacity data. The model has already proven its utility in treating 
experimental data on eight compositions of matter (Mn,,,Cr,,,,As, deerite, 
grunerite, and some scapolites) which will be published soon. It is rapidly 
being enhanced and adapted to related problems. 
Treatment of transverse and longitudinal acoustical branches. Irrespective of 
chemical or crystallographic structure, any solid substance has two trans- 
verse acoustical and one longitudinal acoustical modes. In the model calcu- 
lation, it is assumed that the two transverse acoustical modes are degenerate 
and the dispersion relation for the longitudinal acoustical mode is similar to 
the transverse modes. The first assumption holds only for the phonons 
which propagate in highly symmetrical directions such as [loo] and [ill] in 
the NaCl-type crystals and is not true in general. Since the dispersion 
relations for the two transverse acoustical modes are, however, quite similar 
in comparison to those for the longitudinal acoustical mode or the optical 
modes and have very similar peak frequencies, the assumption is probably 
not over-bold. The propriety of the second approximation may be judged 
from the typical example of dispersion relations [36]. 
Treatment of optical branches. It is not as easy to formulate the dispersion 
relations or the distribution function for the optical branches as for the 
acoustical branches as discussed above. Only the number of modes per- 
taining to the optical branches is easily obtained. That is, if the number of 
atoms in a formula unit or a molecule and that of formula units or 
molecules in a primitive cell are n and Z, there are (3nZ - 3) optical 
branches per primitive cell or (3n - 3/Z) per formula unit or molecule 
because the total number of degrees of freedom is 3nZ and three modes out 
of 3nZ modes are accommodated by the acoustical branches. The (3nZ - 3) 
optical branches may be divided into (2nZ - 2) transverse modes and 
(nZ - 1) longitudinal model since any elastic wave which propagates in a 
three-dimensional medium is generally composed of two independent trans- 
verse modes and one longitudinal mode and thus phonon modes also may be 
automatically divided into two with the same ratio. 

The frequency range 

The wavelength corresponding to the maximum frequency for the acousti- 
cal branch at the edge of the first Brillouin zone is twice the size of the 
primitive cell. On the other hand, simple considerations on the properties of 
waves show that the wavelength cannot be smaller than twice the smallest 
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interatomic distance or the smallest spacing between the adjacent atomic 
planes which vibrate collectively. The maximum frequency for the acoustical 
branch is (2 k/M) - ‘I2 on the average mass approximation and the frequency 
is inversely proportional to the wavelength if the velocity is constant. If 
these facts are boldly related despite the standing wave at the zone boundary, 
the maximum frequency for the optical modes can be estimated on the 
average mass approximation: 

w,o = (D/d)w; 

where D is the representative size of the primitive cell, d is the smallest 
interatomic distance or the smallest spacing of the atomic planes, and 
0; = (2k/G)“2 is the maximum frequency for the acoustical mode on the 
average mass approximation. D may be the cube-root of the volume of the 
primitive cell (V), and d may be the smallest spacing of the atomic planes 
like that of the [ill] planes in the NaCl structure. Since even in a simple 
structure the planes are generally composed of different kinds of atoms 
which interact with different force constants, the collective motion as a 
single plane is not expected. Therefore, d is for most cases the smallest 
interatomic distance. The smallest sum of the ionic radii of the possible pairs 
in the structure may be a good approximation for d if the crystallographic 
data are not available. 

The lowest frequency for the optical mode coincides with w, on the 
average mass approximation. As the transverse and longitudinal acoustical 
modes are distributed in the different frequency ranges, the corresponding 
(2n.Z - 2) transverse and (nZ - 1) longitudinal optical modes wil be distrib- 
uted from w:_~ to ( V1/3/d)a& and from w$_ ( V1/3/d)ut L as the first 
approximation. The ratio of the longitudinal optical frequency to the trans- 
verse optical frequency &o”, at low wave vector K can be related to the 
dielectric constants by the Lyddane-Sachs-Teller relation: 

where c(O) is the static dielectric constant and e(cc) is the high-frequency 
limit of the dielectric function, defined to include the core electron contribu- 
tion. 

The frequency range in the first approximation is, however, too narrow 
since the masses of the atoms and the interatomic force constants are not 
identical in general and they both affect the vibration so that the frequency 
range becomes wider than that obtained from the average mass and the 
average force constant model. The heavier atoms with mass of M, will lower 
the lowest frequency by the factor (u/M,)‘/* and the lighter atoms with 
mass of M, will raise the highest frequency by the factor ( a/M1)‘/2 if the 
force constants are the same. The factor is deduced from the general mass 
dependency of the frequency. The phonon densities of the added frequency 
regions will be dominated by the numbers of the heavier and lighter atoms 



21 

in the primitive cell. It is, however, not easy to find the deviation of force 
constants from the average force constant in comparison to the mass factor 
if no additional data are provided except for the basic information such as 
the chemical and crystallographic structures. Therefore, the effects of differ- 
ent force constants are neglected in the model except for the special case of 
internal branches which will be discussed later. 
The form of the distribution function. Were constant group velocity to be 
assumed as a first approximation, the phonon density would be a simple 
parabolic function of frequency like the Debye model under the continuum 
appro~mation. The major factor which changes the dist~bution function is 
the discreteness of the atomic ~angement in the real crystals because the 
wavelength is comparable to the interato~c distances. The discreteness is 
inco~orated with brevity into the dist~bution function so that the phonon 
mode can exist by resonance only when one-half of its wavelength is 
approximately equal to a certain interatomic distance. The probability of 
this resonance is very roughly a parabolic function of wavelength since the 
number of atoms in the spherical shell is roughly proportional to the area of 
the sphere if its thickness is kept at an infinitesimally small constant value 
and the area is a parabolic function of radius. The probability of finding an 
interatomic distance close to a given value is directly proportional to the 
number of atoms which are located at the same distance from an arbitrarily 
chosen atom. Therefore, the parabolic dist~bution function based on the 
continuum appro~mation will be reduced by the factor which is inversely 
proportional to the square of frequency. The product is a simple constant 
phonon density independent of frequency. This result agrees with Kieffer’s 
intuitive choice as described briefly in the Introduction. The low-frequency 
protrusion from (2/~/@j’/~ to (2k/M,) ‘I2 has a similar constant distribu- 
tion function, and the high-frequency tail from (2k/$?)‘/*( V1j3/d) to 
(2k/M,)‘/2(V1/3/d) has a function of the form: 

where wz = (2~/~,)“*(~~~/d)- Th e reason for the choice of this equation 
is that the correction factor for discreteness shifts from wV2 to ( we2 - wzw2) 
at the ~~-frequency end because the phonon density is zero above wz. 
Many observed distribution functions curve toward zero in a manner similar 
to that of this equation. The magnitude of the low-frequency protrusion is 
determined so that the heavier atoms contribute to the phonon density 
homogeneously from (2 k/M,) ‘I2 to (2k/_@)‘12( V’13/d). The magnitude of 
the phonon density in the region from (2k/fl)‘/* to (2k/M,)‘/*( V’i3/d) is 
determined so that the remaining degrees of freedom are exhausted. The 
distribution function for the high-frequency tail is determined from the 
condition for the ~ntinuity of the dist~bution function for the main portion 
at u = (2k/M)‘/‘( V1/3/d). The last condition is quite arbitrary although it 
affects the heat-capacity curve only slightly. 
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Treatment of internal branches. Some molecular groups like OH-, NH:, 
SO:-, and CO;- form internal branches. The molecular group with s atoms 
has (3s - 6) internal branches if it is non-linear and (3s - 5) internal 
branches if it is linear. The frequency of each branch is little affected by the 
surroundings. Since their frequencies in the free ion state are well known for 
most cases and the frequencies in the crystal are not so different from those 
in the free ion state, the Dirac a-function at the known frequency in the free 
ion state can represent the phonon density for the internal branch without 
serious error. Of course, better fit is expected if the frequency in the crystal 
is available. The molecular group has five or six degrees of freedom after the 
internal vibrations are subtracted as the internal branches. The molecular 
group may be regarded as a single particle with three normal vibrational 
modes for three independent directions (x, y, z) and three independent 
rocking motions (roll, pitch, and yaw) if it is non-linear. Or, alternatively, 
the molecular group may be regarded as two normal particles each of which 
has three degrees of freedom. (The linear molecular group has two independ- 
ent rocking modes instead of three, and three normal vibrational modes.) 
Therefore, it may be assumed that the molecular group behaves as if there 
were 5/3 normal particles provided the internal branches are treated sep- 
arately. 

Certain vibrational modes may have exceptionally low or high frequencies 
because of extremely small or large force constants and/or because of the 
participation of exceptionally heavy or light atoms. For instance, the Si-0 
stretching mode, which has a frequency of ca. 1000 cm-‘, is isolated from 
the other modes in the phonon distributions of many silicates. These types 
of vibrational modes are more appropriately represented by Dirac &func- 
tions rather than by the constant phonon density though their frequencies 
may be more strongly affected by the circumstances than the “ true” internal 
branches are. We recognized that isolated high-frequency modes appear 
upon the introduction of a few light atoms and that they can be properly 
approximated by the Dirac S-function. 
Formulation of the heat-capacity equation. The following characteristic tem- 
perature is used for a reference parameter in the formulation of the molar 
isometric heat capacity, C,,,(T) at the temperature T: 

8 = ( h/2nk,)(2k@4)“2 

where h is the Planck constant, K, is the Boltzmann constant, the subscript 
T of the force constant, k, denotes the transverse mode, and M is the 
arithmetic mean of atomic masses. This characteristic temperature corre- 
sponds to the maximum frequency for the doubly degenerate, transverse 
acoustical mode in the mean mass and the spherical Brillouin zone ap- 
proximations and to about 90% of the maximum frequency for that mode in 
the Debye approximation. 

The crystal with n atoms per formula unit or per molecule and with 2 
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formula units or molecules per primitive cell has a molar heat capacity at the 
infinitely high temperature in the Dulong-Petit limit, 3nR, where R is the 
gas constant. If there are p internal branches in a primitive cell and the i-th 
internal branch is w,-fold degenerates, the internal branches contribute 

r=l 

to the heat capacity at their limit. The mean mass, M, should be calculated 
by: 

M= t A4,/ n - l/3 t w,/z 
I=1 i r=l i 

Here M, is the mass of the i-th atom in a formula unit or a molecule. The 
contributions of the transverse and longitudinal acoustical branches are 
2 R/Z and R/Z, and those of the transverse and longitudinal optical modes 
are 

i 
2n-2/2-2cw,/3Z Rand n-l/Z- iw,/3Z R 

i=l i i i=l I 

at their limits. Two-thirds of the internal branches are regarded as transverse 
and the rest as longitudinal modes. The general relationship between the 
distribution function, g(o), and the isometric heat capacity, CJ T), is: 

C,(T) = iurn” exp(hw/kBT) 
{exp( Aw/k,T) - l}* 

( ‘“)2g(w) dw 

kaT 

where w,, is the maximum frequency and tt = h/2r. 
The molar lattice heat capacity at constant volume is the sum of the 

above five contributions: 

C”,,(T) = C$(T) + c$W) = c$V) + C$KT) + C&(T) 

= C”,,(O~ T) (1) 

upon assumption of harmonic vibrations. The important feature of eqn. (1) 
is representation of the heat capacity as a function of the characteristic 
temperature, 8, for those compounds which do not have an internal branch. 
Equation (1) is a weighted sum of the terms which belong to one of the 
following two forms: 

f(x) = [ 3/( Ax)~] jAr_v4e4,‘( ey - l)* dy 
0 

g(x) = [3/B~]~~‘~*e*/(e’- l)* dy 

where A and B are constants and x = 8/T. 
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Fig. 4. Schematic distribution function for phonon distribution model. 
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The general morphology of the distribution function is shown in Fig. 4. 
Details of the evaluation of the particular models should be sought in the 
definitive paper [36]. 
Application of the model. One striking example of those cited is that of the 
scapolites [37]. Scapolite is a framework silicate mineral which can be 
regarded as a solid solution between two end-members: marialite, 
Na,Al,Si,O,Cl, and meionite, Ca,Al,Si,O,,CO,. The sub-ambient heat 
capacities of five scapolite members have been measured recently in our 
laboratory [37]. Our phonon distribution model was tested with those data 
since they do not have heat-capacity anomalies or electronic contributions 
below 350 K and they contain a significantly large number of atoms in the 
primitive cell. 

The ratio w Jwr calculated for alkali halides on the basis of the simple 
Born model was used as that for scapolite since the related data to estimate 
wL/wT are not available. These were fit with parameters shown elsewhere 
[37] with an appropriate Brillouin zone (a rectangular parallelopiped), primi- 
tive-cell volume dependent on concentration and internal vibrations for 
carbonate and sulfate groups. Anharmonic effects were neglected because 
the heat capacities are less than 75% of the Dulong-Petit limit below 350 K. 

The apparent characteristic temperatures thus calculated are shown in 
Fig. 5 and compared with the Debye characteristic temperatures also indi- 
cated in the same figure. The maximum characteristic temperature changes 
in the temperature region from 8 to 350 K average 15%, those for the Debye 
e by 15%. 

The improvement over the Debye model is clearly significant for the 
scapolite samples. The rise in the apparent 0 at the low-temperature end for 
the Me,, sample is thought not to be due to a flaw of the model but to 
experimental problems. 

Other applications of the theory are to the resolution of broad transitions , 

in deerite [38], grunerite [38], and in Mn ,,63Cr0.37As [39]. Other applications 
including those to disilicate crystals and vitreous phases [40] and to the 
resolution of Schottky contributions in lanthanide sesquisulfides [41] are 
underway. Moreover, modifications of the theory itself are in progress. 
Application to Griineisen and Lindemann relations. The volume dependency 
of the Helmholtz free energy-an anharmonicity effect-is described by the 
volume dependency of 0; the equation of state for solids has the same form 
as that derived by Debye: 

where p is the pressure, E,, is the internal energy at zero Kelvin (which is 
not a function of T), and P is the Griineisen constant defined in terms of 
the characteristic temperature in our phonon distribution instead of by the 
Debye characteristic temperature. And, therefore, the Grtineisen relation, 
P = (YV/KC, is compatible with the new model. Here, (Y is the volumetric 
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Fig. 5. (a) Temperature dependencies of the apparent characteristic temperatures for the five 
scapolite samples: (a) Me,?,, (b) MeAd, (c) Me,,, (d) M%,, (e) Mess. The curves are displayed 
by 20 K increments to avoid overlap. The scale accords with values for Me*.+ (b) Similar plot 
for Debye characteristic temperatures except that the increment is 89 K. The scale accords 
with values for Me,,. 

thermal expansion coefficient and K is the isothermal compressibility. 
The Lindemann relation, based on a simplified model of the melting 

process, is also anticipated from the similarity between the general form of 
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the heat-capacity functions of the Debye model and the new model. That is, 

where 6 is the weighted average of 8 and (o,/o~)~, 8 = [3/{2(u,/o,)’ - 
1}]1’3 and T, is the melting temperature. 

Another practical utilization of the characteristic temperature is for the 
calculation of the apparent characteristic temperature from a single set of 

(CW T) data. The extrapolation or interpolation of the apparent B-T 
curve, which is expected to be insensitive to the temperature, may provide an 
attractive method for interpolation of lattice C, m for resolution of the excess 
heat capacity or extrapolation of lattice C,,, into an unmeasured tempera- 
ture region. 
Computer programs for application of the model. Three computer programs 
(suitable even for microcomputers) written in FORTRAN IV were prepared 
for the convenient application of the equation with complete instructions for 
the input data file prior to each program statement. They are listed elsewhere 
in their entirety [42]. 
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